Abstract
The changes in cellular structures that occur in cambial cell derivatives during xylogenesis
were examined in Populus trichocarpa Torr et Gray. During dormancy, the cells of the vascular cambium are characterised
by dense cytoplasm, many small vacuoles and lipid bodies. During cambial activation,
cambial cells are highly vacuolated, the cytoplasm is rich in organelles and the nucleus
contains distinctly enlarged nucleoli. The plasma membrane forms vesicle-filled invaginations
which mediate uptake of vesicular material into the vacuole. The mitotic patterns
in dividing fusiform cells are fragmentary due to their strong vacuolisation. During
cell enlargement, cambial cell derivatives remain strongly vacuolated and cytoplasmic
structures are similar to active fusiform cells. From the beginning of secondary cell
wall formation many changes in cytoplasmic structures occur in newly-formed fibres
and vessels. In fibres, the cytoplasm is characterised by components of secondary
cell wall synthesis, as indicated by increased amounts of endoplasmic reticulum, vesicle-producing
dictyosomes and microtubules. In contrast, vessels show a more or less distinct occurrence
of these components and remain more strongly vacuolated than fibres. Similar to cambial
cells, a distinct flow of vesicular material into the vacuole through invaginations
of the plasma membrane is apparent in fibres, as well as in vessels. After completion
of the secondary cell walls, the loss of tonoplast integrity causes the collapse of
the vacuole and initiates cell death in vessels and fibres. In vessels the tonoplast
exhibits unusually strong staining prior to the collapse of the vacuole, indicating
subsequent cell death. Overall, our results indicate an important role for the vacuole
in the xylogen differentiation of cambial derivatives.
Key words
Cambial cell derivatives - ultrastructure - xylem differentiation - poplar
References
- 1 Arend M., Fromm J. H..
Seasonal variation in the K, Ca and P content and distribution of plasma membrane
H+-ATPase in the cambium of Populus trichocarpa.
. Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood
Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 67-70
- 2
Arend M., Weisenseel M. H., Brummer M., Oßwald W., Fromm J. H..
Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during cambial growth in poplar plants.
Plant Physiol.
(2002);
129
1651-1663
- 3
Barnett J. R..
Tracheid differentiation in Pinus radiata.
.
Wood Sci Tech.
(1977);
11
83-92
- 4 Barnett J. R..
Secondary xylem cell development. Barnett, J. R., ed. Xylem Cell Development. Turnbridge Wells; Castle House (1981):
47-95
- 5
Catesson A. M., Funada R., Robert-Baby D., Quinet-Szely M., Chu-Ba J., Goldberg R..
Biochemical and cytochemical cell wall changes across the cambial zone.
IAWA Journal.
(1994);
15
91-101
- 6
Chaffey N..
Cambium: old challenges - new opportunities.
Trees.
(1999);
13
138-151
- 7
Chaffey N., Barnett J., Barlow P..
A cytoskeletal basis for wood formation in angiosperm trees: the involvement of cortical
microtubules.
Planta.
(1999);
208
19-30
- 8
Chaffey N., Barlow P., Sundberg B..
Understanding the role of the cytoskeleton in wood formation in angiosperm trees:
hybrid aspen (Populus tremula × tremuloides) as the model species.
Tree Physiol.
(2002);
22
239-249
- 9
Donaldson L. A..
Lignification and lignin topochemistry - an ultrastructural view.
Phytochemistry.
(2001);
57
839-873
- 10 Esau K.. Plant anatomy. New York; John Wiley and Sons (1965): 735
- 11
Farrar J. J., Evert R. F..
Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia.
.
Trees.
(1997 a);
11
191-202
- 12
Farrar J. J., Evert R. F..
Ultrastructure of cell division in the fusiform cells of the vascular cambium of Robinia pseudoacacia.
.
Trees.
(1997 b);
11
203-215
- 13 Follet-Gueye M. L., Ermel F. F., Vian B., Catesson A. M., Goldberg R..
Pectin remodelling during cambial derivative differentiation. Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood
Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 289-294
- 14
Fukuda H..
Programmed cell death of tracheary elements as a paradigm in plants.
Plant Molecular Biology.
(2000);
44
245-253
- 15 Funada R., Furusawa O., Shibagaki M., Miura H., Miura T., Abe H., Ohtani J..
The role of cytoskeleton in secondary xylem differentiation in conifers. Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood
Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 255-264
- 16
Greenberg J..
Programmed cell death: a way of life for plants.
Proc Natl Acad Sci USA.
(1996);
93
12094-12097
- 17
Groover A., DeWitt N., Heidel A., Jones A..
Programmed cell death of plant tracheary elements differentiating in vitro.
Protoplasma.
(1997);
196
197-211
- 18
Groover A., Jones A. M..
Tracheary element differentiation uses a novel mechanism coordinating programmed cell
death and secondary cell wall synthesis.
Plant Physiol.
(1999);
119
375-384
- 19
Grünwald C., Ruel K., Kim Y. S., Schmitt U..
On the cytochemistry of cell wall formation in poplar trees.
Plant Biology.
(2002);
4
13-21
- 20
Gugliemino N., Liberman M., Jauneau A., Vian B., Catesson A. M., Goldberg R..
Pectin immunolocalization and calcium visualization in differentiating derivatives
from poplar cambium.
Protoplasma.
(1997);
199
151-160
- 21 Iliev I., Savidge R..
Proteases in relation to the earliest stage of xylogenesis in Pinus banksiana Lamb. Stems. Savidge, R., Barnett, J., and Napier, R., eds. Cell and Molecular Biology of Wood
Formation. Oxford; BIOS Scientific Publishers Ltd. (2000): 277-288
- 22
Kuhn A. J., Schröder W. H., Bauch J..
On the distribution and transport of mineral elements in xylem, cambium and phloem
of spruce (Picea abies [L.] Karst.).
Holzforschung.
(1997);
51
487-496
- 23
Kuriyama H..
Loss of tonoplast integrity programmed in tracheary element differentiation.
Plant Physiol.
(1999);
121
763-774
- 33
Langer K., Ache P., Geiger D., Stinzing A., Arend M., Wind C., Regan S., Fromm J.,
Hedrich R..
Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis.
Plant J.
(2002);
32
997-1009
- 24 Larson P. A.. The Vascular Cambium. Berlin; Springer Verlag (1994): 725
- 25 Marschner H.. Mineral nutrition of higher plants (2nd ed.) San Diego; Academic
Press (1995): 889
- 26
Marty F..
Plant vacuoles.
Plant Cell.
(1999);
11
587-600
- 27 O'Brien T. P..
The primary xylem. Barnett J. R., ed. Xylem Cell Development. Turnbridge Wells; Castle House (1981):
47-95
- 28
Samuels A. L., Rensing K. H., Douglas C. J., Mansfield S. D., Dharmawardhana D. P.,
Ellis B. E..
Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia.
.
Planta.
(2002);
216
72-82
- 29
Savidge R. A..
Xylogenesis, genetic and environmental regulation.
IAWA Journal,.
(1996);
17 (3)
269-310
- 30
Sennerby-Forsse L..
Seasonal variation in the ultrastructure of the cambium in young stems of willow (Salix viminalis) in relation to phenology.
Physiol. Plant..
(1986);
67
529-537
- 34
Spurr A. E..
A low-viscosity epoxy resin embedding medium for electron microscopy.
J Ultrastruct Res.
(1969);
26
31-41
- 31
Timell T. E..
Ultrastructure of the dormant and active cambial zones and the dormant phloem associated
with the formation of normal and compression woods in Picea abies (L.)
Karst. State Univ NY Coll For Tech Bull.
(1973);
96
pp.94
- 32
Wodzicki T., Brown C..
Organization and breakdown of the protoplast during maturation of pine tracheids.
Am J Bot.
(1973);
60
632-640
M. Arend
Technische Universität München
Fachgebiet Angewandte Holzbiologie
Winzererstaße 45
80797 München
Germany
Email: arend@holz.forst.tu-muenchen.de
Section Editor: H. Rennenberg